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Abstract. The semiclassical spectrum of quadruply highly excited four-electron atomic systems has been
calculated for the plane model of equivalent electrons. The energy of the system consists of rotational and
vibrational modes within the circular skeleton orbit approximation, as used in a previous calculation for
the triply excited three-electron systems. The full dynamical analysis is carried out within the Hamiltonian
theory, accounting for the inertial effects and the complete coupling between different degrees of freedom.
Here we present numerical results for energy spectrum of the beryllium atom. The lifetimes of the semi-
classical states are estimated via the corresponding Lyapunov exponents. The vibrational modes relative
contribution to the energy levels rises with the degree of the Coulombic excitation.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding – 31.15.Gy
Semiclassical methods – 31.25.Jf Electron correlation calculations for atoms and ions: excited states

1 Introduction

As the experimental technique is advancing feasibility of
multiple excitation of atoms has become a laboratory re-
ality. In a recent paper by Hasegawa et al. [1] multiple
photoexcitation of beryllium by the synchrotron radiation
has been reported. The so-called hollow atoms with con-
figurations (2s22p3s) (double excitation) and (1s3s23p)
(triple excitation) have been produced. The next step to-
ward the fourfold excitation is envisaged too, in partic-
ular in view that it might be easier to achieve than the
lower degree of excitations, as the comparison between os-
cillator strengths of the twofold and threefold excitations
reveals [1].

On the theoretical side, modelling many-electron
atoms started from the very beginning of 20th century.
As early as in 1904 Nagaoka [2] published his first paper
dedicated to what now is known as ring atomic model,
with 4 electrons circling around the nucleus. In 1912
Nicholson [3] published his first paper on the same sub-
ject too. Those early attempts were aimed at providing
models that were to describe ground state properties of
real atomic systems. We classify them now as “classical
models”, accounting for the subsequent development of
the theory of microscopic systems, resulting ultimately in
Quantum Mechanics. Now we are well aware of the inade-
quacy of these models based on the notion of the classical
trajectory, at least as far as the low-lying atomic states
are concerned. But as the semiclassical theory has been
developed, it has been appreciated that there is a region
where this approach becomes useful and even competi-
tive with more rigorous quantum mechanical calculations.
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This region corresponds to the highly excited states, where
electrons appear well separated in space. The latter prop-
erty allows for neglecting a number of purely quantum
mechanical phenomena, like the exchange effects, as well
as of some other short-range interactions, like spin-spin
one.

Quantum mechanical description of atomic structure
has been successfully applied for not very highly excited
few-electron systems. However, as the degree of excita-
tions increases direct application of the quantum mechan-
ical formalism becomes cumbersome (see, e.g. [4,5], due
to a large mixing of many states (e.g. [8,9]) and semiclas-
sical calculations turn out more feasible. (For the triply
excited lithium see the very recent comprehensive review
by Madsen [10]). Semiclassical models appear particularly
suitable for those few-electron configurations which pos-
sess a high degree of spatial symmetry (e.g. [11]). As the
quantum mechanical calculations have shown these sym-
metrical configurations are gradually attained as the de-
gree of excitation, characterized by the principal quantum
number n, rises. In the case of the intrashell quadruple
excitations (2 ≤ n ≤ 6), the electrons tend to acquire
positions at the vertices of a tetrahedron and a simple
Rydberg formula provides a reasonable estimate of the
energy spectrum [9]. Very recent calculations by Poulsen
and Madsen [12,13] were devoted to finding out possible
configurations of the multiply excited atomic systems with
two, three, four and six electrons. We mention also recent
work by Morishita and Lin [14], where a detailed theo-
retical study of the tetrahedral s4 configuration has been
carried out.

All these theoretical investigations were concerned
with low-lying excited states. Further, they were restricted
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to particular types of underlying classical configurations.
In [4,5] it was the frozen-radii approximation, whereas
in [9,12–14] the angular degrees of freedom were sup-
pressed. In the case of tetrahedral configuration the lat-
ter choice dismisses the semiclassical approach from the
start, since it involves fivefold collisions (four electrons
passing through the nucleus simultaneously). As is well
known even threefold classical collision implies formidable
analytical difficulties.

Frozen-radii models appear restricted to large-
amplitude oscillatory motion, as proposed as early as
in 1920-ies, by Langmuir (see, e.g. [23] and references
therein). The semiclassical approach is therefore by ne-
cessity restricted to nonzero angular momenta of the elec-
trons. For the classical configurations with single electron
orbital momenta quantum numbers high and close to their
maximum values electron paths are well approximated by
circular orbits. These orbits turn out unstable, what cor-
responds to the metastable quantum states. By applying
standard semiclassical quantization rules, one can evalu-
ate rovibronic energy spectra, as it was done for two and
three-electron multiply excited systems [11,18]. Further,
by evaluating the corresponding Lyapunov exponents, sta-
bility of such configurations can be examined [19] and life-
times of these periodic orbits can be estimated [21].

The systems under consideration here belong to the
so-called small-energy systems, which have been studied
extensively for the continuum states [23], in the field of
the near-threshold studies (see, e.g. [24] and references
therein). That the purely classical approach is justified in
the case of small energy particles in the continuum is a
consequence of the particular properties of Coulomb in-
teraction, as shown by Wannier in his seminal paper [25].
The case of the classical dynamics applied to highly ex-
cited atomic species relies also on the Coulombic interac-
tion and on the so-called correspondence identities [22,26].

The general procedure for calculating semiclassical en-
ergies and lifetimes is briefly as follows [11]. One first finds
out periodic classical orbits and then applies standard
quantization rules to quantize the energy spectrum. In this
work we account for the inertial effects, due to the cou-
pling of the rotational (body-fixed) and vibrational mo-
tions, neglected in [11]. In the next section we enumerate
possible classical models as candidates for the underlying
skeleton configurations and carry out calculations for the
plane case. In Section 4 the energy spectrum of the beryl-
lium atom is evaluated and in the last section we discuss
the results.

2 The semiclassical models

Similarly to the continuum states the first step in estab-
lishing the classical model is to set up the skeleton, equi-
librium configuration, which corresponds to the so-called
leading (scaling) configurations in the near-threshold re-
gime. In the planar case there is a strong analogy between
the bound and continuum states symmetry, as the case
with the three electron system is [11]. However, moving to
three-dimensional configuration this analogy is partially
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Fig. 1. The skeleton configurations for the rotating-plane
models.

lifted. Namely, the central symmetry present in the free
motion case goes into a more restricted symmetry for the
bound motion. This is a direct consequence of the change
of the active degrees of freedom. In the near-threshold
kinematics the main direction is radial one, whereas for
the negative energy states it is mainly angular motion that
supports the bounded motion (in the quantum mechani-
cal case multiple collisions at nucleus of many electron
configurations do not make problem, see, e.g. [9]).

In finding the skeleton configuration one first estab-
lishes the static one and then finds out dynamical equilib-
rium state. The most convenient way to examine few-body
systems is to make use of the hyperspherical collective co-
ordinates

ϕij = ∠(ri, rj) − mutual angle, (1)
αi1 = arctan(ri/r1) − hyperangle, (2)

R2 =
∑

r2
i , − hyperradius. (3)

where ri are radial coordinates of the particles from the
centre-of-mass of the entire system.

Generally, to find out the static skeleton configuration
one calculates the minimum of the potential function

V (α, ϕ, R) = C(α, ϕ)/R, (4)

on the hypersphere R = R0 = const. In practice one
selects in advance obvious candidates with appropriate
symmetry and then examines the corresponding potential
functions. In the bounded motion case the static equilib-
rium configuration may differ considerably from the kine-
matic skeleton, due to angular (transverse) motion, which
is necessary for maintaining dynamic equilibrium.

We shall distinguish two classes of classical config-
urations, which one may apply semiclassical quantiza-
tion upon. These are (i) large-amplitude oscillatory (see,
e.g. [6]) and (ii) rovibronic configurations. We enumerate
here some rovibronic models with a high degree of sym-
metry. In Figure 1 we show rotating plane models, with
electrons situated at the vertices of the tetragons. Fig-
ure 1a contains equivalent electrons, whereas in Figure 1b
we have the case of two pairs of nonequivalent, stationary
and rotating electrons respectively. In Figure 2 we show
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for the rotating-tetrahedral model.

3D (tetrahedral) rotating model, which turns out to be
valid for Z = 1 only [20], and thus appears of no physical
relevance within our class of rotating skeleton configura-
tion. (Other possible modes of rotation are not excluded,
but we have not pursued this possibility here; see, e.g.
Fig. 1 in [13], with tetrahedron rotating around Oz-axis.)
Thus we restrict ourselves to the tetragonal planar model,
with four equivalent electrons rotating around the axis
perpendicular to the common plane.

We note that our approach differs from the quantum
mechanical models with a fixed radial coordinate, so-called
frozen-r approximation (see, e.g. [7]) in that we go beyond
the so-called skeleton configuration and account for the
vibrational modes.

Regular structures in the few-electron systems indi-
cates correlated motions. These correlations are subjected
to stable and unstable modes perturbations. The former
are directed transversely to the electron radii, whereas the
later are along the radial coordinate. This sort of insta-
bility is absent from the molecule-like systems, which are
based on different kind of interaction, like Morse poten-
tial. Generally, correlations transversely to the radii from
the rotation axis are constructive, as opposite to those
along the radial distance, which destroy the rotating struc-
ture. Within the context of the small-energy systems de-
structive correlations govern the near-threshold behaviour
of a fragmentation function, and in the case of a quasi-
bounded motion these instabilities determine the lifetime
of the negative-energy systems.

2.1 Beryllium-like planar model

This is an essentially plane tetragonal configuration
model, with the nucleus situated at the centre and elec-
trons rotating around the axis perpendicular to the plane.
Oscillations around the skeleton equilibrium points are
considered, with both stable and unstable modes, as indi-
cated in Figure 3.

As stressed above we consider rovibronic motion as
a superposition of rotational and vibrational motions of
the equivalent electrons. We find first dynamic equilib-
rium configurations, by writing first corresponding classi-
cal equations for the electrons in the field of an infinitely
heavy charge Z.

1
1

1

4
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4∆

∆
δ

nz
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2

1 Fig. 3. The skeleton con-
figuration for the planar
model, with small devia-
tions from the equilibrium
positions.

The Hamilton equations for four electrons moving in
the field of an infinitely heavy nucleus of charge Z read

ṙi = pi, ṗi = −Z
ri

r3
i

+
1,4∑

j( �=i)

rij

r3
ij

≡ Fi, i = 1, 2, 3, 4.

(5)

2.1.1 Skeleton configuration

The skeleton configuration for P1 model consists of four
electrons rotating with a constant angular velocity Ω in
a fixed plane at a fixed distance ρ from the nucleus with
mutual angles ϕij = π(i − j)/2 (i, j = 1, 2, 3, 4).

The solution of equations (5) for this configuration is

r(0)
i = ρ n̂(i)

ρ , p(0)
i = Ωρ n̂(i)

ϕ , (6)

where
ρ3 =

Zeff

Ω2
(7)

and the effective charge is given by

Zeff = Z − µP1, µP1 =
1√
2

+
1
4

= 0.95711. (8)

The screening parameter µP1 is model dependent.
The unit vectors along r(0)

i and p(0)
i directions can be

expressed in terms of the unit vectors of the coordinate
system (0, x, y, z) in the reference frame rotating with the
angular velocity Ω around the z-axis (see Fig. 4)

n̂(i)
ρ = ci n̂x + si n̂y,

n̂(i)
ϕ = −si n̂x + ci n̂y,

n̂(i)
z = n̂z , (9)

where ci ≡ cosϕi, si ≡ sin ϕi and ϕi = π(i − 1)/2.

2.1.2 Small deviations from the skeleton configuration

As it is usual within the perturbative approaches one
writes the particle positions relative to the origin at the
infinitely heavy nucleus with charge Z as

ri = r(0)
i + ∆i n̂(i)

ρ + δi n̂(i)
ϕ + ∇i n̂z , (10)

pi = p(0)
i + Γi n̂(i)

ρ + γi n̂(i)
ϕ + Li n̂z, (11)
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Fig. 4. The skeleton configuration and the unit vectors (9) of
electrons local coordinate systems (the third vector n̂z which
is perpendicular to the xy-plane is not shown).

where ∆i, δi,∇i � ρ (see Fig. 3) and Γi, γi, Li � Ωρ.
Then

ṙi = p(0)
i + (∆̇i − Ωδi) n̂(i)

ρ

+ (δ̇i + Ω∆i) n̂(i)
ϕ + ∇̇i n̂z, (12)

ṗi = −Ω2r(0)
i + (Γ̇i − Ωγi) n̂(i)

ρ

+ (γ̇i + ΩΓi) n̂(i)
ϕ + L̇i n̂z. (13)

Using the latest expressions and relations (9) it can be
shown that the equations of motion (5) are equivalent to
the system of 24 scalar equations for 24 deviations

ci∆̇i − siδ̇i = siΩ∆i + ciΩδi + ciΓi − siγi, (14)

si∆̇i + ciδ̇i = −ciΩ∆i + siΩδi + siΓi + ciγi, (15)

∇̇i = Li, (16)

ciΓ̇i − siγ̇i = ciΩ
2ρ + F (i)

x + siΩΓi + ciΩγi, (17)

siΓ̇i + ciγ̇i = siΩ
2ρ + F (i)

y − ciΩΓi + siΩγi, (18)

L̇i = F (i)
z . (19)

After summing equations (14), (15), multiplied at first by
ci and si, respectively, and then by −si and ci, and after
performing the analogous procedure with equations (17),
(18), the system (14–19) transforms to

∆̇i = Ω δi + Γi (20)

δ̇i = −Ω ∆i + γi, (21)

∇̇i = Li, (22)

Γ̇i = Ω2ρ + ci F (i)
x + si F (i)

y + Ω γi, (23)

γ̇i = −si F (i)
x + ci F (i)

y − Ω Γi, (24)

L̇i = F (i)
z . (25)

2.2 In-plane deviations

Since the deviations ∇i and Li do not appear in equa-
tions (20), (21), (23), (24), the corresponding system of

16 scalar equations for 16 deviations in plane can be
treated separately.

After expanding the force components F
(i)
x , F

(i)
y

around the skeleton configuration and keeping only the
terms linear in deviations, this system of equations can be
written in the 16 × 16 matrix form

Ẋ = AX. (26)

Here

X = {∆1, ..., ∆4, δ1, ..., δ4, Γ1, ..., Γ4, γ1, ..., γ4} (27)

and the 16 × 16 matrix A can be given in the block form

A =

{J I8

Ã J

}
, (28)

where In is n × n identity matrix,

J = Ω

{
0 I4

−I4 0

}
(29)

and

Ã =
Ω2

Zeff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a −3b − 1
4 −3b 0 −b 0 b

−3b a −3b − 1
4 b 0 −b 0

− 1
4 −3b a −3b 0 b 0 −b

−3b − 1
4 −3b a −b 0 b 0

0 b 0 −b c 3b 1
8 3b

−b 0 b 0 3b c 3b 1
8

0 −b 0 b 1
8 3b c 3b

b 0 −b 0 3b 1
8 3b c

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (30)

where a = 2Z − (
√

2 + 1)/4, b =
√

2/8, c = −Z + 1/8 −√
2/4.
To solve (26) one can follow the standard procedure

from the theory of small oscillations (see e.g. [30]). Multi-
plying equation (26) by an unitary matrix U from the left
it transforms into

Ż = U AU−1Z, Z ≡ U X. (31)

Now, we choose U such that

Λ = U AU−1 (32)

is a diagonal matrix. For the Hamiltonian systems the
diagonal elements of Λ (i.e. the eigenvalues of dynamical
matrix A) come in the pairs of opposite signs, ±λk, k =
1, ..., 8 (see e.g. [27]). Then (31) reads

Ż = ΛZ (33)

which is equivalent to 16 scalar equations

Ż2k−1 = λkZ2k−1, Ż2k = −λkZ2k, k = 1, ..., 8, (34)
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Table 1. The eigenvalues λk of the dynamical matrix (Z = 4) for deviations in plane and the corresponding eigenvectors X(n)

at t = 0 (here n = 2k − (1 ± 1)/2).

k (n) 1 (1, 2) 2 (3, 4) 3 (5, 6) 4 (7, 8) 5 (9, 10) 6 (11, 12) 7, 8 (13, 14, 15, 16)

±λk/Ω 0 ±i ±1.47699i ±1.41658i ±1.23955i ±1.08697 (±)0.928209 ± 0.088515i

∆
(n)
1 (0) 0 ∓0.188982i ∓0.166809i ∓0.183367i ±0.165836i 0.183287 (∓)0.003361 ± 0.169239i

∆
(n)
2 (0) 0 ∓0.188982i ±0.166809i −0.183367 −0.165836 −0.183287 −0.169239 ± (∓)0.003361i

∆
(n)
3 (0) 0 ∓0.188982i ∓0.166809i ±0.183367i ∓0.165836i 0.183287 (±)0.003361 ∓ 0.169239i

∆
(n)
4 (0) 0 ∓0.188982i ±0.166809i 0.183367 0.165836 −0.183287 0.169239 ∓ (∓)0.003361i

δ
(n)
1 (0) ∓0.353553 0.377964 0.331963 0.343164 −0.35438 ∓0.212097 −0.018100 ± (∓)0.242123i

δ
(n)
2 (0) ∓0.353553 0.377964 −0.331963 ∓0.343164i ±0.35438i ±0.212097 (±)0.242123 ∓ 0.018100i

δ
(n)
3 (0) ∓0.353553 0.377964 0.331963 −0.343164 0.35438 ∓0.212097 0.018100 ∓ (∓)0.242123i

δ
(n)
4 (0) ∓0.353553 0.377964 −0.331963 ±0.343164i ±0.35438i ±0.212097 (∓)0.242123 ± 0.018100i

Γ
(n)
1 (0) ±0.353553 −0.188982 −0.085588 −0.083411 0.148819 ±0.411324 ∓(∓)0.398915i

Γ
(n)
1 (0) ±0.353553 −0.188982 0.085588 ±0.083411i ±0.148819i ∓0.411324 (∓)0.398915

Γ
(n)
1 (0) ±0.353553 −0.188982 −0.085588 0.083411 −0.148819 ±0.411324 ±(∓)0.398915i

Γ
(n)
1 (0) ±0.353553 −0.188982 0.0855877 ∓0.0834108i ∓0.148819i ∓0.411324 (±)0.398915

γ
(n)
1 (0) 0 ±0.188982i ±0.323496i ±0.30275i ∓0.273434i −0.047256 (±)0.001269 ∓ 0.057105i

γ
(n)
1 (0) 0 ±0.188982i ∓0.323496i 0.30275 0.273434 0.047256 0.057105 ∓ (∓)0.001269i

γ
(n)
1 (0) 0 ±0.188982i ±0.323496i ∓0.30275i ±0.273434i −0.047256 (∓)0.001269 ± 0.057105i

γ
(n)
1 (0) 0 ±0.188982i ∓0.323496i −0.30275 −0.273434 0.047256 −0.057105 ± (∓)0.001269i

where Z = {Z1, ..., Z16}. The solutions of (34) are

Z2k+1 = C2k+1e
λkt, Z2k = C2ke−λkt, (35)

where Cn are arbitrary constants. To return to the original
X-space, we have from (31)

X = U−1Z. (36)

The dynamics around the equilibrium (skeleton configu-
ration) depends exclusively on the eigenvalues ±λk. The
normal modes of the system are related to the eigenvec-
tors Z(n) = {Z(n)

1 , ..., Z
(n)
16 }, where Z

(n)
n′ are given by (35)

with
C

(n)
n′ = δnn′ . (37)

Then, in agreement with (36), the corresponding eigen-
vectors X(n) coincide to the columns of U−1 multiplied by
the exponential factors e±λkt, where n = 2k−1 stands for
+λk and n = 2k for −λk.

2.3 Off-plane deviations

The system of equations (16), (19), after linearizing the
force components F

(i)
z , can be written in the 8× 8 matrix

form
Ẏ = BY. (38)

Here
Y = {∇1, ...,∇4, L1, ..., L4} (39)

and 8 × 8 matrix B can be given in the block form

B =

{
0 I4

B̃ 0

}
, (40)

where

B̃ = − Ω2

Zeff

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α β2 β β2

β2 α β2 β

β β2 α β2

β2 β β2 α

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(41)

and α = Z − 1/8 −√
2/2, β = 1/

√
8.

The eigenvalues of the matrix B̃ are in the same time
the squares of eigenvalues of the matrix B: λ2

1,2,3,4 = −Ω2,
−Ω2, −Ω2 Z/Zeff , −Ω2 (Z −√

2)/Zeff . For Z >
√

2 all λ2

are negative and the eigenvalues of B are purely imag-
inary, i.e. the off-plane deviations are stable. Then, the
eigenvectors of B̃

Q(1) = {−1, 0, 1, 0}, Q(2) = {0,−1, 0, 1},
Q(3) = {−1, 1,−1, 1}, Q(4) = {1, 1, 1, 1}, (42)

where Q(k) ∼ {∇(k)
1 (0),∇(k)

2 (0),∇(k)
3 (0),∇(k)

4 (0)}, deter-
mine the corresponding normal modes of the off-plane
small oscillations around the skeleton configuration.

3 Numerical results – beryllium (Z= 4)

Among 16 eigenvalues of the dynamical matrix (for devi-
ations in plane), beside the pair of zeros, there are four
pairs with purely imaginary values of the opposite signs
(stable oscillatory modes), a pair of real eigenvalues (un-
stable mode) and a quartet of complex eigenvalues (cou-
pled unstable and oscillatory modes), see Table 1. The
latest type of eigenvalues may appear only in the systems
with more than two degrees of freedom [27].
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Fig. 5. Stable (a–d) and unstable (e, f)
normal modes of small deviations from the
skeleton configuration for Z = 4. The cir-
cles show the positions of electrons with

deviations determined by the vectors X
(k)
±

at t = 0 (the full/open circles correspond
to +/− sign).

The deviations related to the eigenvalue λ = 0 (see
the eigenvectors X(1,2) whose components are given in the
column k = 1 in Tab. 1) introduce only a rotational shift
and do not change the skeleton configuration essentially.

In the analysis of oscillatory modes (λk = i ωk, k =
2, ..., 5) it is convenient to consider the linear combinations

X(k)
+ =

X(2k−1)+X(2k)

2
, X(k)

− =
X(2k−1)−X(2k)

2i
, (43)

whose components are real in contrast to those of the
eigenvectors X(n) (n = 3, ..., 10). For example the eigen-

vectors X(3,4) ≡ X(3,4)(0) exp{±iΩ t} (see Tab. 1) give

X(2)
+ =

1
2
√

7
{sinΩt, ..., sin Ωt, 2 cosΩt, ..., 2 cosΩt, ...},

X(2)
− =

1
2
√

7
{− cosΩt, ...,− cosΩt, 2 sinΩt, ..., 2 sinΩt, ...}.

(44)

The evolution of deviations ∆i, δi which are components of
the vectors X(k)

± , k = 2, ..., 5, are shown in Figures 5a–5d.
The electron trajectories corresponding to the modes k =
2, 3 are shown in Figure 6 in the laboratory frame.

Analogously in Figure 5e, beside the stable (λ) and
unstable (−λ) manifolds of the k = 6 mode represented
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Fig. 6. The electrons trajectories corre-
sponding to the modes from Figures 5a and
5b shown in the laboratory frame.
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(d)

ω
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ω

ω

Ω
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Fig. 7. The off-plane small collective os-
cillations (normal modes Q(k) for the case
Z = 4. The circles show the simultaneous
positions of electrons in the xy-plane. The
open circles correspond to non-oscillating
electrons, whereas the symbols �/⊗ denote
different phases of oscillations (the up/down
directions).

by the vectors X(11) and X(12), respectively, the evolution
of deviations which are components of the vectors

X(6)
+ =

X(11)+X(12)

2
, X(6)

− =
X(11)−X(12)

2
(45)

are shown.
For the complex case (Fig. 5f) two stable (λ) and

two unstable (−λ) manifolds are obtained applying equa-
tions (43) to the eigenvectors with complex-conjugate
components (since Im λ � Re λ the oscillatory part is
negligible). Finally, the corresponding pairs of new vectors
(now with real components), proportional to the factors
exp{±λt}, are combined once again using (45). The four

symbols in Figure 5f (full/open circles and squares) rep-
resent the initial positions of electrons leaving the skele-
ton configuration along the trajectories determined by the
latest combinations (the modes represented by full/open
symbols of the same type are obtained using the same
pair of vectors with ±λ). The gray symbols are used in
the cases when the initial positions of an electron for the
modes represented by full and open symbols almost coin-
cide.

The frequency ratios ωk/Ω of the off-plane small col-
lective oscillations (normal modes (42), see Fig. 7) for the
case Z = 4 are: 1, 1, 1.14653, 0.921835.
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4 Semiclassical quantization

We divide the quantization procedure into two consecutive
steps, starting with the zero-order rigid-rotor model.

4.1 The rigid-rotor approximation

The energy of the skeleton configuration is given by

E = −2
Zeff

ρ
. (46)

Since ρ3 = Zeff/Ω and, on the other hand, the single elec-
tron angular momentum is le = Ωρ, one has ρ = l2e/Zeff

and

E = −2
Z2

eff

l2e
= −32

Z2
eff

L2
, (47)

where L = 4le is the total angular momentum. Then, the
quantization condition

L = L +
1
2
, L = 0, 1, 2, ... (48)

gives the energy spectrum of the four electron system
within the rigid rotor approximation

E(0) = −32
Z2

eff

(L + 1
2 )2

. (49)

4.2 Ro-vibrational spectrum

A consequence of the scaling properties of Coulomb sys-
tems is that the product I2E, where I = S/2π is an action
variable, is invariant under the scaling (similarity) trans-
formations. Then, the energy of a (quasi)periodic config-
uration (orbit) can be determined if we know the action
integral I along the orbit for one (principal) period 2π/Ω,
using the formula

E = −I2
sc

I2
, (50)

where Isc is the corresponding action at the scaled energy
Esc = −1. Using simple WKB quantization of the orbit,
semiclassical energies follow from the condition

I = L +
1
2

+
∑

k

ωk

Ω

(
nk +

1
2

)
, (51)

where nk = 0, 1, 2, ... are the vibrational quantum num-
bers for small oscillations of the stable modes (λk = iωk)
in the vicinity of skeleton configuration (nk � L). By com-
paring equations (50), (51) with the formula (49) it is clear
that I2

sc = −32Z2
eff and the semiclassical ro-vibrational

spectrum can be obtained using the formula

E = −32
Z2

eff

I2
(52)

together with the condition (51).

The quantization condition (51) does not take into
account the unstable modes which may determine the
life-times of quantum states. For a correct semiclassical
quantization of an unstable system one needs usually to
calculate the sum of contributions of all periodic orbits
(e.g. using the Gutzwiller trace formula). It is shown, how-
ever, that in the cases when only one periodic orbit exists
the condition (51) can be extended by including unstable
modes, too [32]. The frequencies corresponding to unsta-
ble modes are pure imaginary, ωk = −iλk, and the action
becomes a complex variable. As a consequence the ener-
gies are also complex, whose imaginary parts determine
decay widths. There are same indications that this ap-
proach may be used to estimate the widths of decaying
states when a classical configuration is essentially related
to a part of energy spectrum, although this configuration
might not be the only existing [33]. We shall use this ap-
proach to estimate the positions and widths of symmetric
highly excited states of beryllium related to the proposed
classical configuration.

4.3 The results for beryllium (Z =4)

As we have seen from the stability analysis of the case
Z = 4 there are nine stable modes — five in-plane and
four off-plane collective oscillatory modes. Since for three
of them (e.g. j = 6, 7, 8) the winding numbers ωj/Ω are 1
and for one mode (e.g. j = 9) it is 0, the condition (51)
reduces to

I = N + 2 +
5∑

j=1

ωj

Ω

(
nj +

1
2

)
, N = 0, 1, 2, ..., (53)

where N = L + n6 + n7 + n8. The winding numbers
ωj/Ω different from 1 (j = 1, ..., 5) are: 1.47699, 1.41658,
1.23955, 1.14653, 0.921835, respectively.

If we include the unstable modes, the corresponding
complex action variable Ĩ is

Ĩ = I − i
12∑

j=10

λj

Ω

(
nj +

1
2

)
, (54)

where the ratios λj/Ω for unstable modes (j = 10, 11, 12)
are: 1.08697, 0.928209±0.088515i, respectively. The latest
two modes with the complex-conjugate exponents are not
typical for low dimensional systems, but since Imλ �
Reλ we have neglected the imaginary parts.

We shell consider decaying states (resonances) closest
to the real energy axis, which are related to the quantum
numbers n10 = n11 = n12 = 0 (higher values of these
quantum numbers are related to broad resonances which
form a smooth background of energy spectrum). Then, in
this case

Im Ĩ = −1
2

12∑

j=10

Re λj

Ω
= −1.47169. (55)
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Now, if we extend the formula (52) to complex variables
it follows

Ẽ = −32
Z2

eff

Ĩ2
= E

(
1 +

Im Ĩ

I

)−2

, (56)

where E ≡ Re Ẽ. Further, for highly excited states
| Im Ĩ| � I and Ẽ ≈ E (1 − 2 Im Ĩ/I). Then, the widths
Γ ≡ −2 Im Ẽ of these states are

Γ ≈ 4E
Im Ĩ

I
=

| Im Ĩ|√
2Zeff

(−E)3/2 ≈ 0.342 (−E)3/2. (57)

We see that the stability of the orbits increases as the con-
tinuum is approached, what appears the common feature
of the semiclassical theory. Generally one has

Γ ∼ 1
N3

, (58)

where N is an effective principal quantum number.
In order to elaborate the connection between the life-

times τ = �/Γ and Lyapunov exponents of the classi-
cal configuration note that λj/Ω = λ

(sc)
j /Ωsc. In fact

Ω = Ωsc(−E)−3/2 and λ = λsc(−E)−3/2 for Esc = −1
[32]. On the other hand, from equations (46) and (7) it
follows ρsc = 2Zeff and Ωsc = 1/2

√
2Zeff . Then, equa-

tion (55) can be written in the form

Im Ĩ = −1
2

12∑

j=10

Re λ
(sc)
j

Ωsc
= −

√
2Zeff

12∑

j=10

Re λ
(sc)
j (59)

and equation (57) reduces to

Γ ≈
12∑

j=10

Re λ
(sc)
j (−E)3/2 =

12∑

j=10

Re λj . (60)

Thus, the lifetime of a quadruply excited level is given by

τ =
1

∑12
j=10 Re λj

. (61)

This somewhat counter-intuitive result indicates that the
cascade falling down electrons spend ever less time on their
orbits, simulating a sort of free fall motion. Note also that
unlike the standard case when it is the largest Lyapunov
exponent that matters only, we obtain the sum of three
exponents here.

Some results obtained using the formulae (52), (57)
with the condition (53) are given in Table 2. In Figure 8
we show a part of the energy spectrum for a number of N
values. As can be seen from Figure 8 the vibronic contribu-
tion to the energy appears considerable, with the density
of levels increasing as the continuum is approached.

5 Conclusions

The extension from the triply to quadruply excited states
turns out nontrivial. First, the number of possible under-
lying classical configurations raises considerably. We have

Table 2. Semiclassical energy levels (Z = 4) with N = 10 and∑
k nk ≤ 2 and estimated values for the corresponding decay

widths.

N n1 n2 n3 n4 n5 E (au) Γ (au)

10 0 0 0 0 0 −1.29935 0.506
10 0 0 0 0 1 −1.15414 0.424
10 0 0 0 0 2 −1.03198 0.359
10 0 0 0 1 0 −1.12244 0.407
10 0 0 0 1 1 −1.00514 0.345
10 0 0 0 2 0 −0.97934 0.331
10 0 0 1 0 0 −1.10970 0.400
10 0 0 1 0 1 −0.99434 0.339
10 0 0 1 1 0 −0.96895 0.326
10 0 0 2 0 0 −0.95872 0.321
10 0 1 0 0 0 −1.08604 0.387
10 0 1 0 0 1 −0.97425 0.329
10 0 1 0 1 0 −0.94963 0.316
10 0 1 1 0 0 −0.93970 0.312
10 0 2 0 0 0 −0.92124 0.302
10 1 0 0 0 0 −1.07814 0.383
10 1 0 0 0 1 −0.96754 0.325
10 1 0 0 1 0 −0.94316 0.313
10 1 0 1 0 0 −0.93334 0.308
10 1 1 0 0 0 −0.91507 0.299
10 2 0 0 0 0 −0.90895 0.296

Fig. 8. The part of semiclassical energy spectrum (Z = 4)
which contains the levels with N = 10, ..., 15 and

∑
k nk ≤ 3.

restricted ourselves in this paper to one of the most simple
plane models, but even in this case the spectrum appears
very complex.

Of course, four equivalent electrons obviously violate
Pauli’s principle, but in real highly excited states two pairs
of equivalent electrons are practically indistinguishable
from the four particles intrashell. One may consider the
system as composed of two equivalent electrons with op-
posite spins and with L = Lmax/2, and another pair with
L = (Lmax − 1)/2, both practically with circular, mutu-
ally indistinguishable orbits (see, e.g. [4] for the equivalent
quantum mechanical situation).
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If the present results are to be compared with the rel-
evant quantum mechanical ones, what in the absence of
experimental data appears the only criterion for valuing
the procedure employed, one must bear in mind that the
two approaches are complementary. First, full quantum
mechanical calculations are still feasible for the low lying
states only, where the semiclassical approach is not ex-
pected to work. Second, the restricted model calculations,
like those within the frozen-r approximation, are still of
qualitative nature, aiming mainly at classifying possible
quantum states. In this respect, semiclassical modeling
can be helpful in choosing underlying configurations that
may be used for the quantum mechanical calculations.
How much effective this approach can be is well illustrated
by the theory of near-threshold fragmentation, which has
been based on the purely classical model due to Wannier.

As mentioned above experimental situation appears
promising in the case of multiply excited low-lying states.
As for the highly multiply excited states, including four-
fold ones, they do not appear close neither from the ex-
perimental, nor from the quantum mechanical point of
view (see, e.g. [14] for the latter perspective). In principle
one may envisage various ways to produce experimentally
fourfold excitations. One way would be that already used
for the doubly and triply excited beryllium, as reported
by [1]. Another procedure, also used by experimentalists,
would involve multiple charge transfer between highly ion-
ized atoms and neutrals in plasma. (We are indebted to
the referee for drawing our attention to this point.) But
the principal problem with identifying those multiply ex-
cited states is the nature of the spectrum which should
result from these energy states. This problem has been
successfully overcome in the case of the molecular rovi-
bronic spectra, and hopefully may be equally well resolved
in the case of atomic systems. The problem is, of course,
closely related to the issue of the existence of other possi-
ble classical configurations, in addition to the one studied
here. It is only after examining all other possible candi-
dates that one can estimate the statistical weight of the
present model. We envisage further studies of the issue.

Generally, highly excited states belong to the corre-
spondence principle domain and can serve as tools for elu-
cidating many quantum mechanical features of the atomic
systems via a more transparent semiclassical models. Cal-
culations presented in this paper should hopefully con-
tribute to this end.

This work has been supported by the Ministry of Science and
Environment Protection of Serbia.

References

1. S. Hasegawa, F. Yoshida, L. Matsuoka, F. Koike, S.
Fritzsche, S. Obara, Y. Azuma, T. Nagata, Phys. Rev.
Lett. 97, 023001 (2006)

2. H. Nagaoka, Bull. Math. Phys. Soc. Tokyo 2, 140 (1904)
3. J.W. Nicholson, Month. Not. Roy. Astr. Soc. 72, 49 (1912)
4. Bao Cheng-guang, Phys. Rev. A 47, 1752 (1993)
5. Bao Chengguang, Duan Yiwu, Phys. Rev. A 49, 818 (1994)
6. C.G. Bao, J. Phys. B 25, 3725 (1992)
7. C.G. Bao, Phys. Lett. A 250, 123 (1998)
8. C. Nicolaides, N. Pianos, Y. Komninos, Phys. Rev. A 48,

3578 (1993)
9. Y. Komninos, C. Nicolaides, Phys. Rev. A 50, 3782 (1994).

10. L. B. Madsen, J. Phys. B. 36, R223 (2003)
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Balatonfuüred, 1986, edited by Gy. Bencze, P. Doleshall,
J. Reval (Budapest, 1986), pp. 253–281
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